Targeted Mutagenesis of the Endogenous Mouse Mis Gene Promoter In Vivo Definition of Genetic Pathways of Vertebrate Sexual Development

نویسندگان

  • Nelson A Arango
  • Robin Lovell-Badge
  • Richard R Behringer
چکیده

Mutations were introduced into conserved steroidogenic factor 1 (SF1)- and SOX9-binding sites within the endogenous mouse Mullerian inhibiting substance (Mis) promoter. Male mice homozygous for the mutant SF1-binding site correctly initiated Mis transcription in fetal testes, although at significantly reduced levels. Surprisingly, sufficient MIS was produced to eliminate the MUllerian ducts. In contrast, males homozygous for the mutant SOX9-binding site did not initiate Mis transcription, resulting in pseudohermaphrodites. These studies suggest an essential role for SOX9 in the initiation of Mis transcription, whereas SF1 appears to act as a quantitative regulator of Mis transcript levels, perhaps for influencing non-Mullerian duct tissues. Comparative studies of Mis expression in vertebrates indicate that the Mis promoter receives transcriptional inputs that vary between species but result in the same functional readout.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression under F8 Promoter Driving In Mouse Hepatoma Cells: A Step towards Gene Therapy of Hemophilia

Background and Objectives: Significant progress has been made in treatment of hemophilia. Ex-vivo gene therapy is going popular due to the capability of this method in using isogenic cells for genetic manipulation and reintroducing them into same host after proliferation. Most gene therapy techniques use viral vectors, which usually harbor a strong and non-specific promoter (e...

متن کامل

In vitro versus In vivo: Development-, Apoptosis-, and Implantation-Related Gene Expression in Mouse Blastocyst

Background: While mammalian embryos can adapt to their environments, their sensitivity overshadows their adaptability in suboptimal in vitro conditions. Therefore, the environment in which the gametes are fertilized or to which the embryo is exposed can greatly affect the quality of the embryo and consequently its implantation potential. Objectives:</stro...

متن کامل

Genetic polymorphisms in the promoter region of catalase gene, creates new potential PAX-6 and STAT4 response elements

Catalase (CAT, OMIM: 115500) is an endogenous antioxidant enzyme and genetic variations in the regulatory regions of the CAT gene may alter the CAT enzyme activity and subsequently may alter the risk of oxidative stress related disease. In this study, potential influence(s) of the A-21T (rs7943316) and C-262T (rs1001179) genetic polymorphisms in the CAT promoter region, using the ALGGEN-PROMO.v...

متن کامل

Gene Expression Profile Analysis during Mouse Tooth Development

Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 99  شماره 

صفحات  -

تاریخ انتشار 1999